Hi, I want to ask a question about how to do cumsum in tvm.compute. For example, we define a tensor X as follows.

X = tvm.placeholder((2,3), name=“X”)

cum = tvm.compute((2,3), lambda i,j,k: X[i,j,k]) ???

cumsum

[ [1,1,1], [2,2,2] ] --> [ [1,2,3], [2,4,6] ]

I want to implement a cumsum in the second axis, axis[1], of tensor X, how should I write tvm.compute.

I find the the tvm.scan in doc as follows:

# The following code is equivalent to numpy.cumsum

```
m = tvm.var("m")
n = tvm.var("n")
X = tvm.placeholder((m, n), name="X")
s_state = tvm.placeholder((m, n))
s_init = tvm.compute((1, n), lambda _, i: X[0, i])
s_update = tvm.compute((m, n), lambda t, i: s_state[t-1, i] + X[t, i])
res = tvm.scan(s_init, s_update, s_state, X)
```

[[1,1,1], [2,2,2]] --tvm.scan-> [[1,1,1],[3,3,3]] ?

but it seems that tvm.scan can only do cumsum in the first axis, how should I do scan or cumsum on the other axises?